4006-01-9999
當前位置: 公務員考試網 > 師說公考 > 授課經驗 >

2020國考行測備考倍數特性題目的特征

作者:張禾穎慧 分校:四川分校
2019-10-31 11:14:28

在行測備考中經常會出現一些正面去解非常的麻煩,而利用倍數特性就非常簡單的題目,很多學生遇到這類題目會感到束手無策,那么倍數特性類的題目有什么特征呢?

在題目中出現比例、分數、小數、百分數的時候,我們就要優先想到這是倍數特性類的題目了。另一方面如果題目里出現了平均數、余數類的意思這類題目其實也是考察的倍數特性。那么倍數特性的核心是什么呢?

(m、n互質),則a是m的倍數,b是n的倍數,a±b是m±n的倍數。這個式子是倍數特性的核心公式。那么怎么去應用倍數特性呢?接下來,我們從幾個例題中去體會一下。

【例1】 甲工廠每天生產的零件數比乙工廠的1.5倍還多40個,乙工廠每天生產的零件數比甲工廠的一半多20個。則兩個工廠每天共能生產多少個零件?

A. 400 B. 420

C. 440 D. 460

解法一:傳統的方法,我們利用方程法來解答。

設甲、乙每天生產的零件數分別為x個、y個,可得方程,解得,兩個工廠每天“共”生產x+y=440個。因此,選擇C選項。

解法二:利用倍數特性來解答

由乙每天生產的零件比甲的一半多20,可得。兩個廠每天共能生產的零件個數為,故所求值減去20后一定是3的倍數,只有C選項滿足。因此,選擇C選項。

【例2】某企業共有職工100多人,其中,生產人員與非生產人員的人數之比為4∶5,而研發與非研發人員的人數之比為3∶5。已知生產人員不能同時擔任研發人員,則該企業不在生產和研發兩類崗位上的職工有多少人?

A. 20

B. 30

C. 24

D. 26

思路剖析:這道題的難點就在于這個企業有多少員工。我們用傳統的方法很難算出來。細看題目可以發現題干中出現了兩組比例,是倍數特性類的題目。

解法:根據生產與非生產人員的人數“之比”為4:5,得總人數為9的倍數;同理,由“之比”為3:5,得總人數為8的倍數,因此總人數為72的倍數;由“共”有職工100多人可知,總人數應為72x2=144人。那么,生產人員為人,研發人員為人,由生產人員“不能”同時擔任研發人員,可知不在生產和研發崗位的人數有144-64-54=26人。因此,選擇D選項。

今日体彩杀码